import numpy as np
import pandas as pd
import pandas_datareader.data as web
# Get stock data
all_data = {ticker: web.DataReader(ticker,'stooq')
for ticker in ['AAPL', 'NVDA', 'MSFT', 'TSLA', 'AMZN', 'NFLX', 'QCOM', 'SBUX']}
# Extract the 'Adjusted Closing Price'
price = pd.DataFrame({ticker: data['Close']
for ticker, data in all_data.items() })
import matplotlib.pyplot as plt
fig1, axes1 = plt.subplots(2,4, sharex = True, sharey = True)
axes1[0,0].plot(price['AAPL'],'-', color = 'gold', label = 'AAPL')
axes1[0,0].legend(loc = 'best')
axes1[0,1].plot(price['NVDA'],'-', color = 'red', label = 'NVDA')
axes1[0,1].legend(loc = 'best')
axes1[0,2].plot(price['MSFT'],'-', color = 'blue', label = 'MSFT')
axes1[0,2].legend(loc = 'best')
axes1[0,3].plot(price['TSLA'],'-', color = 'royalblue', label = 'TSLA')
axes1[0,3].legend(loc = 'best')
axes1[1,0].plot(price['AMZN'],'-', color = 'black', label = 'AMZN')
axes1[1,0].legend(loc = 'best')
axes1[1,1].plot(price['NFLX'],'-', color = 'purple', label = 'NFLX')
axes1[1,1].legend(loc = 'best')
axes1[1,2].plot(price['QCOM'],'-', color = 'pink', label = 'QCOM')
axes1[1,2].legend(loc = 'best')
axes1[1,3].plot(price['SBUX'],'-', color = 'green', label = 'SBUX')
axes1[1,3].legend(loc = 'best')
# fig1.savefig('stocks1.pdf')
<matplotlib.legend.Legend at 0x11c9e22d0>
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plt.plot(price['AAPL'], '-',color = 'gold', label = 'AAPL')
plt.plot(price['NVDA'],'-', color = 'red', label = 'NVDA')
plt.plot(price['MSFT'],'-', color = 'blue', label = 'MSFT')
plt.plot(price['TSLA'],'-', color = 'royalblue', label = 'TSLA')
plt.plot(price['AMZN'],'-', color = 'black', label = 'AMZN')
plt.plot(price['NFLX'],'-', color = 'purple', label = 'NFLX')
plt.plot(price['QCOM'],'-', color = 'pink', label = 'QCOM')
plt.plot(price['SBUX'],'-', color = 'green', label = 'SBUX')
ax.legend(loc = 'best')
ax.set_ylabel("Price", fontsize=12)
ax.set_xlabel("Year", fontsize=12)
ax.set_title("Sample Portfolio", fontsize = 16)
Text(0.5, 1.0, 'Sample Portfolio')